The best time to visit Tianjin and these other gre

center_img Find Flight Deals to Chongqing with Tianjin Airlines When is the best time to travel to China? Find Flight Deals to Xi’an with Tianjin Airlines Flight Deals to Xi’an Find Flight Deals to Tianjin with Tianjin Airlines Chongqing, the “Mountain City” has magnificent natural landscapes, which is why it is also called the “Country of Heaven” and the “Land of Abundance”. Relish the organic beauty of the Wansheng Heishan Valley Tourism Area, take a boat ride up the Yangtze River to the spectacular Three Gorges. Pamper yourself with a soak at the Ronghui Hot Springs, or book a private sight-seeing tour of a panda sanctuary in Chengdu. This, and much more,await you in exciting and superb Chongqing. Read More Explore the World with Tianjin Airlines Find Flights to All Destinations with Tianjin Airlineslast_img read more

Artificial intelligence created these bizarre faces—and monkey neurons love them

first_img Sign up for our daily newsletter Get more great content like this delivered right to you! Country Ponce, Xiao, and Schade et al., Cell (2019), adapted by E. Petersen/SCIENCE Email Click to view the privacy policy. Required fields are indicated by an asterisk (*) Neurons in our brain’s visual cortex respond to remarkably specific stimuli, including the faces of celebrities such as Jennifer Aniston. But researchers have long struggled to determine precisely what images excite individual neurons in this region, because the possibilities are literally infinite. Now, a study has tackled that problem in monkeys, using a computer algorithm that can rapidly figure out what type of image is most stimulating to a neuron. The results reveal hundreds of odd images, including bizarrely distorted, gargoylelike monkey faces.The work is “an incredibly clever and creative application of artificial intelligence to an old problem,” says Bevil Conway, a neuroscientist at the National Eye Institute in Bethesda, Maryland, who was not involved in the research.In the experiment, a monkey with electrodes inserted into its inferior temporal cortex—a brain region involved in object recognition—views a series of pictures. (When this region is damaged in people, they can lose their ability to identify faces and objects, a rare disorder called agnosia.) The images start out devoid of content, a gray blur of visual noise. But based on which ones trigger a selected neuron to fire, a machine learning algorithm creates a new batch of images that the monkey neuron is predicted to “like” even more. By Emily UnderwoodMay. 2, 2019 , 11:00 AMcenter_img Country * Afghanistan Aland Islands Albania Algeria Andorra Angola Anguilla Antarctica Antigua and Barbuda Argentina Armenia Aruba Australia Austria Azerbaijan Bahamas Bahrain Bangladesh Barbados Belarus Belgium Belize Benin Bermuda Bhutan Bolivia, Plurinational State of Bonaire, Sint Eustatius and Saba Bosnia and Herzegovina Botswana Bouvet Island Brazil British Indian Ocean Territory Brunei Darussalam Bulgaria Burkina Faso Burundi Cambodia Cameroon Canada Cape Verde Cayman Islands Central African Republic Chad Chile China Christmas Island Cocos (Keeling) Islands Colombia Comoros Congo Congo, the Democratic Republic of the Cook Islands Costa Rica Cote d’Ivoire Croatia Cuba Curaçao Cyprus Czech Republic Denmark Djibouti Dominica Dominican Republic Ecuador Egypt El Salvador Equatorial Guinea Eritrea Estonia Ethiopia Falkland Islands (Malvinas) Faroe Islands Fiji Finland France French Guiana French Polynesia French Southern Territories Gabon Gambia Georgia Germany Ghana Gibraltar Greece Greenland Grenada Guadeloupe Guatemala Guernsey Guinea Guinea-Bissau Guyana Haiti Heard Island and McDonald Islands Holy See (Vatican City State) Honduras Hungary Iceland India Indonesia Iran, Islamic Republic of Iraq Ireland Isle of Man Israel Italy Jamaica Japan Jersey Jordan Kazakhstan Kenya Kiribati Korea, Democratic People’s Republic of Korea, Republic of Kuwait Kyrgyzstan Lao People’s Democratic Republic Latvia Lebanon Lesotho Liberia Libyan Arab Jamahiriya Liechtenstein Lithuania Luxembourg Macao Macedonia, the former Yugoslav Republic of Madagascar Malawi Malaysia Maldives Mali Malta Martinique Mauritania Mauritius Mayotte Mexico Moldova, Republic of Monaco Mongolia Montenegro Montserrat Morocco Mozambique Myanmar Namibia Nauru Nepal Netherlands New Caledonia New Zealand Nicaragua Niger Nigeria Niue Norfolk Island Norway Oman Pakistan Palestine Panama Papua New Guinea Paraguay Peru Philippines Pitcairn Poland Portugal Qatar Reunion Romania Russian Federation Rwanda Saint Barthélemy Saint Helena, Ascension and Tristan da Cunha Saint Kitts and Nevis Saint Lucia Saint Martin (French part) Saint Pierre and Miquelon Saint Vincent and the Grenadines Samoa San Marino Sao Tome and Principe Saudi Arabia Senegal Serbia Seychelles Sierra Leone Singapore Sint Maarten (Dutch part) Slovakia Slovenia Solomon Islands Somalia South Africa South Georgia and the South Sandwich Islands South Sudan Spain Sri Lanka Sudan Suriname Svalbard and Jan Mayen Swaziland Sweden Switzerland Syrian Arab Republic Taiwan Tajikistan Tanzania, United Republic of Thailand Timor-Leste Togo Tokelau Tonga Trinidad and Tobago Tunisia Turkey Turkmenistan Turks and Caicos Islands Tuvalu Uganda Ukraine United Arab Emirates United Kingdom United States Uruguay Uzbekistan Vanuatu Venezuela, Bolivarian Republic of Vietnam Virgin Islands, British Wallis and Futuna Western Sahara Yemen Zambia Zimbabwe Artificial intelligence created these bizarre faces—and monkey neurons love them Based on feedback from a monkey neuron, an artificial intelligence algorithm created this weird monkey-gnome. Over many iterations, the algorithm produces vaguely recognizable objects, including “gnomelike, monkeyish things,” says Margaret Livingstone, a neurobiologist at Harvard Medical School in Boston and the study’s principal investigator. Some of those images remind Conway of portraits by Pablo Picasso or Francis Bacon.Further testing suggested that, although the same neurons respond to pictures of real monkey faces, they seem to prefer the distorted abstractions—things an animal would never see in real life, Livingstone and her colleagues report today in Cell. Other monkey neurons produce images that look a bit like the monkeys’ food dispenser, or one of the caretakers, named Diane, who wears a protective mask.Why the monkeys prefer the abstracted images to real ones is still a mystery. One possibility is that the neurons work by computing the difference between faces, putting more weight on extreme features like a caricature artist would, Livingstone suggests. That would make them more responsive to such exaggerated features—and it would make them more efficient to have than lots of individual neurons wired to recognize specific faces, she notes. “That way, you get everything in between for free.”One thing is clear: The majority of the preferred stimuli are learned through experience. “There’s no way a monkey evolved a cell to code for a person wearing protective gear,” Livingston says. The next step is testing the approach in people undergoing brain surgery for epilepsy who agree to be studied while their brains are more accessible, she says. “Then, we’ll be able to learn what neurons in the human brain want.”last_img read more